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Abstract

The search for small molecule inhibitors of Ebola virus (EBOV) has led to
several high throughput screens over the past 3 years. These have identified a
range of FDA-approved active pharmaceutical ingredients (APIs) with
anti-EBQV activity in vitro and several of which are also active in a mouse
infection model. There are millions of additional commercially-available
molecules that could be screened for potential activities as anti-EBOV
compounds. One way to prioritize compounds for testing is to generate
computational models based on the high throughput screening data and then
virtually screen compound libraries. In the current study, we have generated
Bayesian machine learning models with viral pseudotype entry assay and the
EBOV replication assay data. We have validated the models internally and
externally. We have also used these models to computationally score the
MicroSource library of drugs to select those likely to be potential inhibitors.
Three of the highest scoring molecules that were not in the model training sets,
quinacrine, pyronaridine and tilorone, were tested in vitro and had ECg, values
of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a
combination therapy for malaria that was recently approved by the European
Medicines Agency, which may make it more readily accessible for clinical
testing. Like other known antimalarial drugs active against EBOV, it shares the
4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has
shown a broad array of biological activities including cell growth inhibition in
cancer cells, antifibrotic properties, a7 nicotinic receptor agonist activity,
radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine
is an antimalarial but also has use as an anthelmintic. Our results suggest data
sets with less than 1,000 molecules can produce validated machine learning
models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
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(iZ757:3 Amendments from Version 2

It has been brought to our attention that there was an error in the
pyronaridine 2D structure drawing in Table 3 (missing a nitrogen
from bottom right ring). This has now been corrected.

See referee reports

Introduction

In 2014, the outbreak of the Ebola virus (EBOV) in West Africa
highlighted the need for broad-spectrum antiviral drugs for this and
other emerging viruses'. Several groups had previously performed
high throughput screens (HTS) and identified FDA approved drugs
(amodiaquine, chloroquine, clomiphene and toremifene) with
in vitro growth inhibitory activities against EBOV*’. It appears none
of these molecules were tried during the epidemic in Africa’, likely
due to the lack of efficacy data in higher order species. We have
previously summarized the numerous small molecules described in
the literature as possessing antiviral activity that could be further
evaluated for their potential EBOV activity alongside the few new
antivirals. We have found that there is considerable prior knowledge
regarding these small molecules possessing activity against EBOV
in vitro or in animal models’~*, and this includes a number of acces-
sible FDA-approved drugs>*’. Another recent study has shown
three approved ion channel blockers (amiodarone, dronedarone,
and verapamil) inhibited EBOV cellular entry’. The drugs were
given at concentrations that would be achieved in human serum, and
were effective against several of the filoviruses’. None of the FDA
approved drugs described in these various studies were designed to
target the Ebola virus. For example amodiaquine and chloroquine are
well known antimalarials, clomiphene and toremifene are selective
estrogen receptor modulators, while amiodarone, dronedarone, and
verapamil are anti-arrhythmics®. It may or may not be of importance
but all of these compounds have a common tertiary amine feature'"'".
What is important is that they are all orally bioavailable and gener-
ally safe for humans at their approved doses. Some have suggested
that G-protein-coupled receptors (GPCRs) may play a role in filovi-
ral entry and receptor antagonists could be developed as anti-EBOV
therapies'”. The compounds which are FDA-approved drugs for
other diseases™"’ but with activity against EBOV in vitro or in vivo
may represent useful starting points with the advantage that much
is known regarding their absorption, distribution, metabolism and
excretion (ADME) and toxicity properties. Thus, these repurposed
drugs may represent a more advanced starting point for therapeu-
tic development and approval compared with new chemical entities
for preventing the spread and mortality associated with EBOV.

Beyond these early stage drugs, there are a number of other com-
pounds that have also been identified as active against EBOV
(summarized in a review'”). A thorough literature search identified
55 molecules suggested to have activity against EBOV in vitro
and/or in vivo which were evaluated from the perspective of an
experienced medicinal chemist as well as using simple molecular
properties and ultimately 16 were highlighted as desirable'’. This
dataset overlaps to some extent with another review that identified
over 60 molecules'”. Two recent repurposing screens identified 53'¢
and 80" compounds with antiviral activity which also overlap the
earlier screens. Additional studies have identified small number of
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inhibitors'®'”. In total there may now be close to several hundred
compounds identified with activity against EBOV in vitro.

Approaches with more capacity to screen compounds include using
computational methods as a filter before in vitro testing. Compu-
tational models for anti-EBOV activity include one which used
the average quasi valence number (AQVN) and the electron-ion
interaction potential (EIIP), parameters determining long-range
interaction between biological molecules for virtual screening
of DrugBank and suggested hundreds of compounds to test”. A
follow up to this study proposed ibuprofen for testing”'. Others have
also used computational docking studies to propose multi-target
inhibitors of VP40, VP35, VP30 and VP24’ inhibitors of VP40>
or have suggested molecules to test in the absence of computational
approaches™ . We are unaware of any validation of these com-
pounds. A further computational approach used a pharmacophore”
that was generated from four FDA approved compounds resulting
from the two earliest high throughput screens against EBOV?>. This
pharmacophore closely matched the receptor-ligand pharmacoph-
ores for the EBOV protein 35 (VP35)°. Follow-up docking studies
suggested that these compounds may also have favorable inhibitory
interactions with this receptor. The pharmacophore was further used
to screen several compound libraries’’. We proposed that if we could
learn from the many compounds already screened for anti-EBOV
activity, we could more efficiently find additional compounds and
perhaps understand the key molecular features needed for antivi-
ral activity'*. We speculated then that Laplacian-corrected Naive
Bayesian classifier models might be useful as they have been for
M. tuberculosis®* and more recently for 7. cruzi*’. To our knowl-
edge machine learning approaches to identify EBOV inhibitors
have not been attempted elsewhere. The current study extends the
machine learning approach to EBOV and uses both commercially
available Bayesian, Support Vector Machines (SVM) and recur-
sive partitioning methods and open source Bayesian software for
model generation and compound scoring. We report the identifica-
tion of three novel EBOV inhibitors with nanomolar EC, values as
validation of this approach.

Methods

Chemicals and materials

Quinacrine hydrochloride, pyronaridine tetraphosphate, and tilorone
dihydrochloride (BOC Sciences, Shirley, NY), bafilomycin Al,
and chloroquine diphosphate (Sigma, St. Louis, MO) were dis-
solved in either DMSO or water as 10 mM stock solutions and
were stored at -20°C. The nucleus staining dye, Hoechst 33342,
CellMask Deep™ Red cytoplasmic/nuclear stain, NHS-Alexa-488
dye, the Dual-Glo® Luciferase Assay System and CytoTox 96™
assay kit were purchased from Promega (Promega, Madison, WI).
The modified MTT assay Cell Counting Kit 8 was procured from
Dojindo Molecular Technologies (Dojindo Molecular Technologies,
Gaithersburg, MD). The 96-well high-content imaging plates were
obtained from BD (BD Biosciences, Franklin Lakes, NJ) and
96-well white-walled tissue culture plates were from Corning
(Corning Life Sciences, MA). The Opera QEHS confocal imaging
reader, Acapella™ and Definiens™ image analysis packages were
purchased from PerkinElmer (PerkinElmer, USA). Image acquisi-
tion was done using Nikon TI eclipse high content imaging enabled
microscope running NIS elements high content imaging software
(version 4.30.02).
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Machine learning

868 molecules from the viral pseudotype entry assay and the EBOV
replication assay from a recent publication™*' were made available
as an sdf file’. Salts were stripped and duplicates removed using
Discovery Studio 4.1 (Biovia, San Diego, CA)**~*“. For each assay,
compounds with IC, values less than 50 uM were selected as actives.
All other compounds were classed as inactives. Models were gener-
ated using a standard protocol with the following molecular descrip-
tors: molecular function class fingerprints of maximum diameter
6 (FCFP_6)", AlogP’, molecular weight, number of rotatable
bonds, number of rings, number of aromatic rings, number of
hydrogen bond acceptors, number of hydrogen bond donors, and
molecular fractional polar surface area. Models were validated
using five-fold cross validation (leave out 20% of the database).
Bayesian, Support Vector Machine and Recursive Partitioning Forest
and single tree models built with the same molecular descrip-
tors in Discovery Studio were compared. For SVM models, we
calculated interpretable descriptors in Discovery Studio and then
used Pipeline Pilot to generate the FCFP_6 descriptors followed
by integration with R*. RP Forest and RP Single Tree models
used the standard protocol in Discovery Studio. In the case of RP
Forest models, ten trees were created with bagging. Bagging is
short for “Bootstrap AGgregation”. For each tree, a bootstrap
sample of the original data is taken, and this sample is used to grow
the tree. RP Single Trees had a minimum of ten samples per node
and a maximum tree depth of 20. In all cases, 5-fold cross validation
or leave out 50% x 100 fold cross validation was used to calculate
the Receiver Operator Curve (ROC) for the models generated””.

Open Bayesian models

Open Bayesian models for the Ebola datasets were developed using
open source software’~' and loaded into the Mobile Molecular
Data Sheet (MMDS (http://molmatinf.com/)) and then the two
models were used to score the three compounds selected by the
earlier models. These two models are also openly accessible (http://
molsync.com/ebola/) and can be uploaded into MMDS in order to
score molecules of interest.

Pharmacophore mapping

Pyronaridine was mapped to the recently published pharmacophore®
derived from Ebola in vitro inhibitors amodiaquine, chloroquine,
clomiphene and toremifene in Discovery Studio Vers 4.1 and a fit
score was generated.

In vitro testing

Recombinant, infectious Ebola virus encoding green fluorescent
protein (GFP) was used for testing efficacy of compounds and was
originally provided by Dr. Heinz Feldmann, Rocky Mountain Labo-
ratories. The strain that was used has the GFP gene inserted between
the VP30 and VP24 genes. All viral infections were done in the
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BSL-4 lab at Texas Biomedical Research Institute. Briefly, 4,000
HeLa cells per well were grown overnight in 384-well tissue culture
plates, the volume of DMEM (Fisher scientific, Cat#MT10017CV)
culture medium supplemented with 10% fetal bovine serum (Gemini
Bio-Products, Cat#100106) was 25 pL. On the day of assay, test
drugs were diluted to 1 mM concentration in complete medium.
25 uL of this mixture was added to the cells already containing
25 pL medium to achieve a concentration of 500 uM. All treatments
were done in triplicates. 25 pL of medium was removed from the
first wells and added to the next well. This type of serial dilution
was done 12 times and treated cells were then incubated at 37°C
in a humidified CO, incubator for 1 hour. Final concentrations of
250, 125, 62.5, 31.25, 15.62, 7.81, 3.9, 1.9, 0.97, 0.48, 0.24 and
0.12 uM were achieved upon addition of 25 pL of infection mix
containing Ebola-GFP virus, Bafilomycin at a final concentration
of 10 nM was used as a positive control drug. Infections were done
to achieve a MOI of 0.05 to 0.15. Infected cells were incubated for
24 hours. 24 hours post-infection cells were fixed by immersing the
plates in formalin for 24 hours at 4°C. Fixed plates were decontami-
nated and brought out of the BSL-4. Formalin from fixed plates was
decanted and plates were washed thrice with PBS. EBOV-infected
cells were stained for nuclei using Hoechst at 1:50,000 dilution and
plates were imaged. Nuclei (blue) and infected cells (green) were
counted using CellProfiler software (Broad Institute)- Version 2.1.1.
Total number of nuclei (blue) was used as a proxy for cell numbers
and a loss of cell number was assumed to reflect cytotoxicity. Con-
centrations where total cell numbers were 20% less than the control
were rejected from the analysis.

Results

Machine learning

Using 5-fold cross validation the Bayesian approach (Data S1 and
Data S2) performed the best for the EBOV replication data and was
equivalent for the RP Forest approach (Table 1) and was better than
SVM (Data S3 and Data S4) for the pseudotype data. The Open
Bayesian models had ROC scores slightly lower than the Bayesian
models built with Discovery Studio. A more exhaustive cross vali-
dation for the Bayesian models is the ‘leave out 50% repeated ran-
domly 100 times’ which produced ROC values greater than 0.8 and
were comparable to the 5-fold cross validation data. This indicated
the models are stable. For the EBOV pseudotype assay, alkoxyethyl-
amino was a common feature amongst active compounds in the
training set, as were 1,3-diaminopropyl and saturated six-member
heterocycles with an oxygen and perhaps an additional heteroatom
in the ring (Figure 1A). Training set inactives commonly featured
carboxylic acids, N,N'-disubstituted ureas, secondary and terti-
ary amides, pyrazoles, aromatic sulfonamides, tertiary cyclopen-
tanols, 1,2-mercaptoethanol, and penams (Figure 1B). For the
replication assay training set, active features included piperazine,
phenothiazine, tertiary amines, and alkoxyethylamino (Figure 2A).

Table 1. Machine learning model cross validation Receiver Operator Curve (ROC) statistics.

Models RP Forest RP Single Tree SVM Bayesian Bayesian Open Bayesian
(training set 868 (Out of bag ROC) (With 5 fold cross (with 5 fold cross (with 5 fold cross (leave out 50% x (with 5 fold cross
compounds) 9 validation ROC) validation ROC) validation ROC) 100 ROC) validation ROC)
Ebola replication , 7 0.78 0.73 0.86 0.86 0.82

(actives = 20)

SEOEIFRIRENES . g o 0.81 0.76 0.85 0.82 0.82

(actives = 41)
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Figure 1. A. Active and B. Inactive features for the Discovery Studio pseudotype Bayesian model.
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Figure 2. A. Active and B. Inactive features for the Discovery Studio EBOV replication model.
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Inactive features included secondary amides, disubstituted amines,
cyclopropylmethyl, carboxylic acids, 1,3-oxathiolanes, tertiary
alcohols, phenethyl, and penams (Figure 2B). An actives feature
common between both assays/models was alkoxyethylamino. Inac-
tives features in common between both were carboxylic acids,
secondary amides, penams and tertiary alcohols, which may relate
to properties which prevent the molecules from accessing cellular
sites of viral activity.

The MicroSource Spectrum set of 2320 compounds was then scored
with both Bayesian models (Data S5). Predicted actives were quan-
tified as to their chemical similarity, or distance, from molecules
in the training set. When excluding compounds in the training set
(as well as antipsychotics and other less desirable CNS active com-
pounds), those scoring highly were considered most interesting
and included the antiviral tilorone, the antimalarials quinacrine and
pyronaridine (Figure 3). Perhaps not surprisingly, tertiary amines
scored particularly well. These molecules were also scored with the
open Bayesian models (Data S6) and all replication models scored
the compounds highly (values close to or greater than 1). None of
these three compounds has been described in recent reviews of small
molecules with activity against EBOV'*'°, to our knowledge.

Pharmacophore
The MicroSource set had previously been screened with the
published Ebola common feature pharmacophore’®”, using the

Pyronaridine

Discovery Studio
Replication model 23.62

score

Discovery Studio
Pseudovirus model 17.16

score

Open Bayesian
Replication model 1.01

score
Open Bayesian
Pseudovirus model 0.72

score

Cl
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van der Waals surface of amodiaquine (which was more potent
than chloroquine’) to limit the number of hits retrieved*~**. Two of
the three selected — compounds quinacrine (fit score 2.59) and
tilorone (fit score 3.65) — were retrieved previously. We there-
fore used the ligand pharmacophore mapping to map pyronari-
dine to the pharmacophore without the van der Waals surface
(Figure 4, Fit score of 3.60 suggested this was a good match to
pharmacophore features).

In vitro testing

The three selected compounds were tested in vitro alongside
the positive control chloroquine which gave an expected dose
response curve (Figure 5, Table 2). Quinacrine, pyronaridine and
tilorone, were tested in vitro and had EC50 values of 350, 420
and 230 nM, respectively which were lower than for chloroquine
4.0 uM. Several images created in this study illustrate the results
of this high content screen (Data S7).

Discussion

Our recent work on neglected diseases has shown that we can
learn from existing assay datasets. Specifically we have previ-
ously analyzed large datasets for Mycobacterium tuberculosis to
build machine learning models that use single point data, dose-
response data***, combine bioactivity and cytotoxicity data (e.g.
Vero, HepG2 or other model mammalian cells)’****® or combi-
nations of these sets'**. These models in turn have been validated

Tilorone

o
o .O o
o™ e,

Quinacrine

NEt,
N OMe
Z

HNJ\/\/ 2
N

29.73 20.90
22.25 17.73
1.63 1.31
1.28 1.17

Figure 3. Molecules scoring well with the Ebola Bayesian models. For comparison, chloroquine scored 31.38 in the replication Discovery
Studio Bayesian model, 24.55 in the Discovery Studio Pseudovirus Bayesian model, 1.63 in the Open Bayesian Replication model and 0.51

in the Open Bayesian Pseudovirus model.
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Table 2. Effect of drug treatment on infection with
Ebola-GFP (n=3 per compound). The cytotoxicity
of compounds are represented as a 50% cytotoxicity
concentration (CC,) estimated by the lowest
concentration of drug that produced = 50% loss in
cell number by nuclei counting.

o Cytotoxicity
Compound EC_ (uM) [95% CI] cC,, (uM)
Chloroquine 4.0 [1.0-15] 250
Pyronaridine  0.42 [0.31-0.56] 3.1
Figure 4. Pyronaridine mapped to a previously published Quinacrine  0.35 [0.28-0.44] 6.2
pharmacophore based on compounds active against Ebola virus Tiiene 0.23 [0.09-0.62] 6.2
in vitro. Fit score of 3.60 (Chloroquine (yellow) = 4.21). ! ! ! !
110 ,
100 ¢ Chloroquine
£ gg ® Pyronaridine
S 70 v Quinacrine
Q .
< 60 + Tilorone
,_U ig Untreated control
o
<2 30
w20
= 10
0
-10 1 1 I I 1
8 7 6 5 4

Log Conec. (M)

Figure 5. Effect of drug treatment on infection with Ebola-GFP. Cells were treated and then challenged with Ebola virus encoding GFP.
Infection efficiency was calculated as infected cells (expressing GFP)/total cells and normalized to infection efficiency seen in the untreated
control. Shown is one representative experiment where each point is the average of 3 independent measurements of infection +/- standard

deviation. Dose response curves were fitted by non-linear regression.

with additional non-overlapping datasets, demonstrating that it is
possible to use publically accessible data to find novel in vitro active
antituberculars. We have also applied the same approach recently
to identify a molecule with in vitro and in vivo activity against
T. cruzi®. In the current study we found that different machine learn-
ing methods produced similar 5-fold cross validation data, although
the Bayesian models had ROC values consistently above 0.80, which
is preferable. One of the issues with computational models is that
they are rarely accessible to others due to the commercial software
licensing requirements. We have previously showed that models
built with open source tools can produce validation statistics compa-
rable to commercial modeling tools”. We recently made “function
class fingerprints of maximum diameter 6” (FCFP6) and “extended
connectivity (ECFP6) fingerprints,” open source and have described
their implementation with the Chemistry Development Kit (CDK)™
components’'. In addition we described an open source Bayesian

algorithm that can be used with these descriptors®*’. One way to
make such models more accessible is to use mobile devices for their
delivery and we have developed cheminformatics mobile apps*'~'=".
Several of these apps combine Bayesian models and open source
fingerprint descriptors to enable models that can be used within a
mobile app (TB Mobile, MMDS, Approved Drugs and MolPrime).
This enables a scientist to select a molecule and score it with
models. In the current study we used the same training sets for the
anti-EBOV activity using replication and pseudotype screening data
to build open source models that we can share with the community
(http://molsync.com/ebola/).

The Bayesian models allowed us to select three compounds from
the MicroSource compound library that scored highly and were not
in the model training sets. The Open Bayesian models also scored
the three hits favorably, which bodes well for screening other
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compounds of interest. Two of these molecules had also been
identified with our earlier pharmacophore model which may be
indicative of binding to VP35%°. When tested in vitro the three com-
pounds possessed EC, values 230-420 nM, much lower than the
positive control chloroquine (EC,, 4.0 uM) used in this study and
identified previously’. Tilorone is an investigational agent that has
been known for over 40 years as an antiviral®® and is an inducer
of interferon in mice’’. It has been shown to possess a broad array
of biological activities including cell growth inhibition in PC3
CDK5dn prostate cancer cells (IC,, 8-12 uM)”, inhibition of
Primase DnaG from Bacillus anthracis (IC, 7.1 uM)™, in a mouse
model of pulmonary fibrosis it decreased lung hydroxyproline con-
tent and the expression of collagen genes®, o7 nicotinic receptor
(nAChR) agonist activity (K, 56 nM)"', activated human alpha7
nAChR with an EC, value of 2.5 uM®, radioprotective activity”,
potent modulation of HIF-mediated gene expression in neurons
with neuroprotective properties® and induction of the accumula-
tion of glycosaminoglycans, delay infectious prion clearance,
and prolong prion disease incubation time®. Quinacrine is an old
antimalarial drug now more widely used as an antiprotozoal for
the treatment of giardiasis®® and as an anthelmintic. Pyronarid-
ine is a potent antimalarial (IC,; 13.5 nM)", has activity against
Babesia spp.*, is active in vitro (EC, 225 nM) and in vivo (85.2%
efficacy 4 days treatment at 50 mg/kg) against 7. cruzi’’ and is a
P-glycoprotein inhibitor®. Pyronaridine is used in combination with
artesunate in the European Medicines Agency approved Pyramax’’
which has performed well in clinical trials for malaria’’. As this
molecule has already been approved this may have a more direct
path to clinical testing if it is found to be active in standard animal
models infected with the Ebola Virus.

As stated before in perspectives by us’ and others™'®**, the fact
that approved drugs may be repurposed for other diseases should
not be viewed as a negative aspect of the small molecules, bely-
ing undesirable target promiscuity’. Instead, we prefer to reference
recently published crystallographic analyses’> demonstrating that
small molecules may bind multiple proteins in different types of
binding sites and with distinct conformations to ultimately facili-
tate molecular repurposing. While it would be most desirable to
repurpose an approved drug and, thus, catapult a discovery effort
into a Phase II trial, one should not ignore the significance of uti-
lizing the discovery of a new use for an old drug to seed efforts in
the lead optimization phase’®. Such an expedited program would
be expected to have a high probability of producing novel small
molecules, closely related to or inspired by the drug, with the
opportunity to translate quickly to clinical trials.

In summary, this study has added to the previous work that iden-
tified several FDA approved compounds active against EBOV
in vitro. Future work may include identification of targets using
computational or experimental approaches. We propose that
these three molecules may warrant further evaluation in vivo as

F1000Research 2017, 4:1091 Last updated: 26 JUL 2017

they are significantly more active than chloroquine. Larger scale
virtual screening could be performed on the millions of com-
mercially available molecules or more complete sets of approved
and older no longer used drugs than have already been screened.
These computational efforts can then prioritize molecules for test-
ing. Such an approach may be a useful way to leverage the HTS
data that has already been developed at great cost. In this study
we have focused on just the data from a single group®’' but it may
also be possible to combine this with the data from the other high
throughput screens™'®'” to provide a much larger training set. There
is also the opportunity to apply many different computational
approaches beyond those described here to identify whole cell
active compounds against EBOV. Ultimately, we should be able
to identify additional compounds that could be immediately use-
ful to treat patients with the disease while we await the approval
of a vaccine.

Data availability

Supplemental data contains results from Bayesian models and SVM
models as well as the output of predictions with Bayesian models
and open Bayesian models.

The training sets used in the models are available as SDF files
(http://molsync.com/ebola/).
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Ekins et al. have presented a crisp and lucid manuscript on a very relevant topic. They have presented a
methodology that implements machine learning techniques to learn from known active and inactive
compounds (an ever increasing set, that will tend to provide improved results as time goes by), and score
a larger set of compounds (MicroSource Spectrum set of 2320 compounds). The in silico methodology
described here provides an excellent method to quickly screen known compounds for possible therapies
(against Ebola in particular), and other viruses in general. Finally, they demonstrate (in vitro) the increased
effectiveness of three compounds - the antiviral tilorone and the antimalarials quinacrine and pyronaridine
- in comparison to the known active chloroquine (albeit at a higher cytotoxicity) in inhibiting viral infection
of Hela cells. Further, their efforts in ensuring open-access to such tools is commendable as the next
pathogen caused humanitarian crisis looms in some nations.

The biggest open question is how good are the molecular descriptors, and how much of this is
serendipitous. For example, | find it hard to believe that molecular weight and the number of rotatable
bonds can be good predictors of drug-protein interactions (although | may be wrong). | have been
investigating promiscuous ligand protein interactions for a couple of years on a molecular basis (
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032011,
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http://f1000research.com/articles/2-286/v3). One interesting example (unpublished) is suramin used in
the treatment of African sleeping sickness (African trypanosomiasis) and river blindness (onchocerciasis),
infections caused by parasites. Suramin binds eight non-homologous proteins in the PDB database,
through different parts of the molecule and in binding sites that share little similarity in residues involved.
Also, the molecule (in addition to the protein) undergoes conformational changes, underscoring the
difficulty of computational methods to model such interactions. In the face of such data, the m/c learning
models appear too simplistic.

Also, it is not completely clear why the 23, 31 and 34th compound was chosen from the Table S5, which
is ordered on column H (all three have amines, don't the previous ones have it?).

Some minor comments:
1. It would be an interesting case study to evaluate how favipiravir (which | understand is yet to be
clinically approved in the US, but approved in Japan) and BCX4430 would rank through the m/c
learning methodology.

2. It would be good to have a set of images, and the corresponding nuclei counts obtained from
CellProfiler. Is there a way to quantify the color green as a measure of viral infection?

3. AlogP as a molecular descriptor has not been explained (page 3).

Competing Interests: No competing interests were disclosed.
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We thank the reviewer for their constructive feedback.

The approach we have taken uses FCFP_6 fingerprints as well as 8 interpretable descriptors, and
therefore the models do not depend on molecular weight and rotatable bond number. On the whole
this approach has been remarkable useful for predicting whole cell activity as we described for
mycobacterium tuberculosis, T. Cruzi and now Ebola. In all cases we are not considering a single
target. This suggests the machine learning approach and descriptors used can discern active
molecule features from those that are inactive and identify new molecules.

The three compounds were chosen as those above them in the list were either compounds in the
training set or antipsychotics and other CNS acting compounds etc. which were deemed less
desirable.

The model could certainly be used to predict additional molecules. These two suggested by the
reviewer are structurally distinct from any of the actives in our current training set. We didn’t identify
any of the classical antiviral polymerase-looking compounds in our screening against Ebola.
However we have previously collated and described many other diverse compounds active against
Ebola in vitro as described in this manuscript. Perhaps the next step would be to utilize all of the
different HTS screening data to build a combined model that considers this structural diversity and
may overcome limitations in the current models.
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Response: we have now added a new figure with cell images (S7).

Response: AlogP is a widely used measure of hydrophobicity and we have refered to its use along
with the other descriptors in the previous machine learning papers.
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Sanja Glisic
Center for Multidisciplinary Research, Vin¢a Institute of Nuclear Sciences, University of Belgrade,
Belgrade, Serbia

Ekins and his colleagues by using machine learning models and molecular modeling have successfully
identified from collection of 2320 compounds 3 promising anti Ebola compounds with in vitro nanomolar
activity. It is a perfect example which confirms suitability of in silico approaches in selection of molecules
against Ebola virus.

This result will be strengthened with suggestion of possible therapeutic target(s) of selected

candidate drugs by using resources of curated chemistry-to-protein relationships. Such information could
help in further improvement of proposed therapeutic molecules, as well as for selection of some other
candidates for Ebola drugs.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 19 Dec 2015
Sean Ekins, Collaborations in Chemistry, USA

We thank the reviewer for their constructive feedback

Response: We are unsure which resources the reviewer is referring to and how these would help
identify the antiviral target. We have tried to extensively describe the known activities of the three
compounds against various targets outside of viruses. In addition we have previously suggested
such antimalarials with Ebola activity may dock into VP35. Preliminary docking results suggest
pyronaridine may dock into the same site which is also indicated by the pharmacophore provided
already (fig 4). We have added the statement “Future work may include identification of targets
using computational or experimental approaches.” to the discussion.
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